
Natural Language Processing
with Deep Learning

IFT6289, Winter 2022

Lecture 16: Dependency Parsing
Bang Liu

2

Lecture outline

1. Syntactic Structure: Constituency and
Dependency

2. Transition-based Dependency Parsing
3. Graph-based Dependency Parsing
4. Neural Dependency Parsing
5. Finding Syntax in Word Representations

Syntactic Structure:
Constituency and

Dependency

What is dependency?

5

Two Most Common of Linguistic Tree Structures

http://www.phontron.com/class/nn4nlp2021/schedule.html

Pāṇini’s grammar of Sanskrit (c. 5th century BCE)

(slide credit: Stanford CS224N, Chris Manning)56 https://en.wikipedia.org/wiki/P%C4%81%E1%B9%87ini

Dependency Grammar/Parsing History

•The idea of dependency structure goes back a long way

•To Pāṇini’s grammar (c. 5th century BCE)

•Basic approach of 1st millennium Arabic grammarians

•Constituency/context-free grammars is a new-fangled invention

•20th century invention (R.S. Wells, 1947; then Chomsky)

•Modern dependency work often sourced to L. Tesnière (1959)

•Was dominant approach in “East” in 20th Century (Russia, China, …)

•Good for free-er word order languages

•Among the earliest kinds of parsers in NLP, even in the US:

•David Hays, one of the founders of U.S. computational linguistics,
built early (first?) dependency parser (Hays 1962)

(slide credit: Stanford CS224N, Chris Manning)67

8

Disambiguation

9

Disambiguation

10

Dependency structure

• Consists of relations between lexical items, normally binary,
asymmetric relations (“arrows”) called dependencies

• The arrows are commonly typed with the name of grammatical
relations (subject, prepositional object, apposition, etc)

• The arrow connects a head (governor) and a dependent (modifier)
• Usually, dependencies form a tree (single-head, connected, acyclic)

7

Dependency Structure

SFU Nat LangLab CMPT 413/825: Natural Language Processing

11

Dependency Relations

https://web.stanford.edu/~jurafsky/slp3/14.pdf

https://web.stanford.edu/~jurafsky/slp3/14.pdf

12

Dependency Relations

https://web.stanford.edu/~jurafsky/slp3/14.pdf

https://web.stanford.edu/~jurafsky/slp3/14.pdf

13

Dependency treebanks

• The major English dependency treebank: converting
from Penn Treebank using rule-based algorithms

• (De Marneffe et al, 2006): Generating typed dependency parses from
phrase structure parses

• (Johansson and Nugues, 2007): Extended Constituent-to-dependency
Conversion for English

• Universal Dependencies: more than 100 treebanks in
70 languages were collected since 2016

https://universaldependencies.org/

Stanford
Dependencies

(English)

Universal
Dependencies
(Multilingual)

14

Dependency Treebanks

SFU Nat LangLab CMPT 413/825: Natural Language Processing

14

Universal Dependencies

• Developing cross-linguistically consistent treebank
annotation for many languages

• Goals:

• Facilitating multilingual parser development

• Cross-lingual learning

• Parsing research from a language typology perspective.

16

Universal Dependencies

SFU Nat LangLab CMPT 413/825: Natural Language Processing

15

Universal Dependencies

15

Universal Dependencies

16 https://universaldependencies.org/introduction.html

Universal Dependencies

17

Universal Dependencies

Manning’s Law:
• UD needs to be satisfactory for analysis of individual languages.
• UD needs to be good for linguistic typology.
• UD must be suitable for rapid, consistent annotation.
• UD must be suitable for computer parsing with high accuracy.
• UD must be easily comprehended and used by a non-linguist.
• UD must provide good support for downstream NLP tasks.

17

Universal Dependencies

SFU Nat LangLab CMPT 413/825: Natural Language Processing

Why we need dependency
when we already have constituency?

19

Advantages of dependency structure

• More suitable for free word order languages

10

Advantages of Dependency Structure

SFU Nat LangLab CMPT 413/825: Natural Language Processing

20

Advantages of dependency structure

• More suitable for free word order languages

• The predicate-argument structure is more useful for many applications

Relation
Extraction

11

Advantages of Dependency Structure

SFU Nat LangLab CMPT 413/825: Natural Language Processing

Dependency Formalisms

22

Dependency Structure
• Constituent structure

- Starts with the bottom level constituents (tokens).

- Group smaller constituents into bigger constituents (phrases).

• Dependency structure

- Starts with vertices (tokens).

- Build a graph by adding edges between vertices (arcs).

3

bought

He car yesterday

a

nsubj dobj

det

tmp

He bought a car

NP

VPNP

S

yesterday

NP

Dependency Structure

CS571: Natural Language Processing, Emory University, Jinho D. Choi

https://www.slideshare.net/jchoi7s/cs571-dependency-parsing

23

Dependency GraphDependency Graph
• For a sentence s = w1 ... wn , a dependency graph Gs = (Vs, As)

- Vs = {w0 = root, w1, ... , wn}.

- As = {(wi, r, wj) : i ≠ j, wi ∈ Vs, wj ∈ Vs - {w0}, r ∈ Rs}.

- Rs = a subset of dependency relations in s.

• A well-formed dependency graph

4

bought

He car yesterday

a

root

evening

- Root

- Single head

- Connected

- Acyclic

Dependency
Tree

CS571: Natural Language Processing, Emory University, Jinho D. Choi

https://www.slideshare.net/jchoi7s/cs571-dependency-parsing

24

Projectivity

CS571: Natural Language Processing, Emory University, Jinho D. Choi

https://www.slideshare.net/jchoi7s/cs571-dependency-parsing

Dependency Graph
• Projectivity

- A projective dependency tree has no crossing arc when all vertices are
lined up in linear order and arcs are drawn above.

- e.g., He bought a car yesterday that is red.

5

that

is

red

bought

He car yesterday

a

root

aboughtHeroot car yesterday that is red

- Regeneration of the original sentence.

- Parsing complexity: O(n) vs. O(n2).

25

projective non-projective

Projectivity

• Definition: there are no crossing dependency arcs when the
words are laid out in their linear order, with all arcs above the words

Non-projectivity arises due to long distance
dependencies or in languages with flexible
word order.

This class: focuses on projective parsing

Crossing

21

Projectivity

SFU Nat LangLab CMPT 413/825: Natural Language Processing

How to get dependency
structure?

27

Constituent to Dependency

CS571: Natural Language Processing, Emory University, Jinho D. Choi

https://www.slideshare.net/jchoi7s/cs571-dependency-parsing

Constituent To Dependency
• Head-finding rules (i.e., head-percolation rules, headrules)

- Constituent trees can be converted into dependency trees.

- Apply headrules recursively to find the head of each constituent.

6

PRP VBD DT NN

NP

VPNP

S

NN

NP

He bought a car yesterday aboughtHeroot car yesterday

S r VP
VP l VB*
NP r NN*;PRP;NP

Phrase type

direction

headrule

28
CS571: Natural Language Processing, Emory University, Jinho D. Choi

https://www.slideshare.net/jchoi7s/cs571-dependency-parsing

Constituent To Dependency

7

S r VP
VP l VB*
NP r NN*;PRP;NP
PP l IN

S

NP-SBJ

NP

NNP

David

POS

’s

NNS

officers

VP

VBD

went

PP-DIR

IN

to

NP

NP

DT

the

NN

land

PP

IN

of

NP

DT

the

NNPS

Ammonites

David ’s officers went to the land of the Ammonites

S

NP-SBJ

NP

DT

The

NNS

soldiers

VP

VBG

guarding

NP

DT

the

NN

tomb

VP

VBD

were

ADJP-PRD

ADJP

RB

very

JJ

afraid

PP

IN

of

NP

DT

the

NN

angel

The soldiers guarding the tomb were very afraid of the angel

1

officers'sDavidroot went to the land of the Ammonites

Constituent to Dependency

29

Dependency parsing

Input: Output:

I prefer the morning flight
through Denver

Learning from data: treebanks!

• A sentence is parsed by choosing for each word what other word
is it a dependent of (and also the relation type)

• We usually add a fake ROOT at the beginning so every word has
one head

• Usually some constraints:
• Only one word is a dependent of ROOT
• No cycles: A —> B, B —> C, C —> A

12

Dependency Parsing

SFU Nat LangLab CMPT 413/825: Natural Language Processing

30

Two families of algorithms

Transition-based dependency parsing
• Also called “shift-reduce parsing”

Graph-based dependency parsing

18

Two Families of Algorithms

SFU Nat LangLab CMPT 413/825: Natural Language Processing

31

Dependency Parsing
• Transition-based parsing

- Transition: an operation searching for a dependency relation between
each pair of tokens (e.g., Shift, Reduce).

- Greedy search that finds local optima (locally optimized transitions)  
→ do better for local dependencies.

- Projective: O(n), non-projective: O(n2).

• Graph-based parsing

- Build a complete graph with directed/weighted edges and find a tree
with the highest score (sum of all weighted edges).

- Exhaustive search that finds for the global optimum (maximum
spanning tree) → do better for long-distance dependencies.

- Projective: O(n3), non-projective: O(n2).

9

Two Families of Algorithms

CS571: Natural Language Processing, Emory University, Jinho D. Choi

https://www.slideshare.net/jchoi7s/cs571-dependency-parsing

32
CS571: Natural Language Processing, Emory University, Jinho D. Choi

https://www.slideshare.net/jchoi7s/cs571-dependency-parsing

Transition-based Parsing
• Projective parsing: O(n)

- Bottom-up: Yamada & Matsumoto, 2003.

- Top-down, bottom-up: Nivre, 2003.

- Beam search: Zhang & Clark, 2008.

- Dynamic programming: Huang & Sagae, 2010.

- Selectional branching: Choi & McCallum, 2013.

• Non-projective parsing: O(n2)

- Exhaustive search: Covington, 2001.

- Reordering tokens: Nivre, 2009 (linear-time in practice).

- Selective search: Choi & Palmer, 2011 (linear-time in practice).

10

Shift-reduce parsing

Transition-based Parsing

33

Evaluation

• Unlabeled attachment score (UAS)
 = percentage of words that have been assigned the correct head
• Labeled attachment score (LAS)
 = percentage of words that have been assigned the correct head & label

UAS = ? LAS = ?
20

Evaluation

SFU Nat LangLab CMPT 413/825: Natural Language Processing

Transition-based
Dependency Parsing

35

Transition-based dependency parsing

• The parsing process is modeled as a sequence of transitions

• A configuration consists of a stack , a buffer and a set of
dependency arcs :

s b
A c = (s, b, A)

Stack:

Buffer:

Current graph:

Unprocessed words

Can add arcs to 1st two words on stack

22

Transition-based Dependency Parsing

SFU Nat LangLab CMPT 413/825: Natural Language Processing

36 https://web.stanford.edu/~jurafsky/slp3/14.pdf

Transition-based Dependency Parsing

https://web.stanford.edu/~jurafsky/slp3/14.pdf

37 https://web.stanford.edu/~jurafsky/slp3/14.pdf

Transition-based Dependency Parsing

Examining the words in a single pass over the input from left to right, and take one
of the following actions:

๏Assign the current word as the head of some previously seen word,
๏Assign some previously seen word as the head of the current word,
๏Or postpone doing anything with the current word, adding it to a store for later

processing.

https://web.stanford.edu/~jurafsky/slp3/14.pdf

38 https://web.stanford.edu/~jurafsky/slp3/14.pdf

Transition-based Dependency Parsing

To make these actions more precise, we’ll create three transition operators that will
operate on the top two elements of the stack:

๏ LEFTARC: Assert a head-dependent relation between the word at the top of the
stack and the word directly beneath it; remove the lower word from the stack.

๏ RIGHTARC: Assert a head-dependent relation between the second word on the
stack and the word at the top; remove the word at the top of the stack;

๏ SHIFT: Remove the word from the front of the input buffer and push it onto the
stack.

https://web.stanford.edu/~jurafsky/slp3/14.pdf

39 https://web.stanford.edu/~jurafsky/slp3/14.pdf

A Running Example

https://web.stanford.edu/~jurafsky/slp3/14.pdf

40 https://web.stanford.edu/~jurafsky/slp3/14.pdf

Several things to note:

๏ The sequence given is not the only one that might lead to a reasonable parse
๏ We are assuming that the oracle always provides the correct operator at each

point in the parse
๏ We have illustrated this example without the labels on the dependency relations.

To produce labeled trees, we can parameterize the LEFTARC and RIGHTARC
operators with dependency labels, as in LEFTARC(NSUBJ) or RIGHTARC(DOBJ).

Things to Note

https://web.stanford.edu/~jurafsky/slp3/14.pdf

41 https://web.stanford.edu/~jurafsky/slp3/14.pdf

Creating an Oracle

Train classifiers to play the role of the
oracle.

๏Training data: representative treebanks
containing dependency trees.

๏ Features: manually designed or
learned

https://web.stanford.edu/~jurafsky/slp3/14.pdf

42 https://web.stanford.edu/~jurafsky/slp3/14.pdf

Creating an Oracle: Generate Training Data

Given a reference parse and a configuration, the training oracle proceeds as
follows:
๏Choose LEFTARC if it produces a correct head-dependent relation given the

reference parse and the current configuration,
๏Otherwise, choose RIGHTARC if (1) it produces a correct head-dependent re-

lation given the reference parse and (2) all of the dependents of the word at
the top of the stack have already been assigned,

๏Otherwise, choose SHIFT.

https://web.stanford.edu/~jurafsky/slp3/14.pdf

43 https://web.stanford.edu/~jurafsky/slp3/14.pdf

Creating an Oracle: Generate Training Data

https://web.stanford.edu/~jurafsky/slp3/14.pdf

44

MaltParser

(Nivre 2008): Algorithms for Deterministic Incremental Dependency Parsing

• Extract features from the configuration

• Use your favorite classifier: logistic regression, SVM…

ROOT has VBZ

He PRP

nsubj

has VBZ good JJ control NN . .

Stack Bu↵er

Correct transition: SHIFT

1

w: word, t: part-of-speech tag

30

Creating an Oracle: Features

https://web.stanford.edu/~jurafsky/slp3/14.pdf

https://web.stanford.edu/~jurafsky/slp3/14.pdf

45

MaltParser

(Nivre 2008): Algorithms for Deterministic Incremental Dependency Parsing

ROOT has VBZ

He PRP

nsubj

has VBZ good JJ control NN . .

Stack Bu↵er

Correct transition: SHIFT

1

Feature templates

s2 . w ∘ s2 . t
s1 . w ∘ s1 . t ∘ b1 . w
lc(s2) . t ∘ s2 . t ∘ s1 . t

lc(s2) . w ∘ lc(s2) . l ∘ s2 . w

Features
s2 . w = has ∘ s2 . t = VBZ

s1 . w = good ∘ s1 . t = JJ ∘ b1 . w = control

lc(s2) . t = PRP ∘ s2 . t = VBZ ∘ s1 . t = JJ

lc(s2) . w = He ∘ lc(s2) . l = nsubj ∘ s2 . w = has

Usually a combination of 1-3 elements from the configuration

Binary, sparse, millions of features

31

Creating an Oracle: Features

Parsing with neural networks

(Chen and Manning, 2014): A Fast and Accurate Dependency Parser using Neural Networks3346

Parsing with Neural Networks

No feature templates anymore!

A Fast and Accurate Dependency Parser using Neural Networks

47

Further ImprovementsFurther improvements

• Bigger, deeper networks with better tuned hyperparameters
• Beam search
• Global normalization

Google’s SyntaxNet and the Parsey McParseFace (English) model

35

48

Arc Eager Transition System

๏The arc-standard transition system described above is only one of many possible
systems.

๏A frequently used alternative is the arc eager transition system.
๏ It asserts rightward relations much sooner than in the arc standard approach.
๏This is accomplished through minor changes to the LEFTARC and RIGHTARC

operators and the addition of a new REDUCE operator.

๏ Read 14.4.2 for more details: https://web.stanford.edu/~jurafsky/slp3/14.pdf

https://web.stanford.edu/~jurafsky/slp3/14.pdf

49

Arc Eager Transition System

50

Beam Search

๏Transition-based approach: a single pass through the sentence, highly efficient
๏Also the source of its greatest weakness – once a decision has been made it can

not be undone.
๏Beam search: not only choose the single best operation at each step (similar to

text generation).

Graph-based
Dependency Parsing

52

Graph-based dependency parsing

• Basic idea: let’s predict the dependency tree directly
Y* = arg max

Y∈Φ(X)
score(X, Y)

X: sentence, Y: any possible dependency tree

• Factorization:

score(X, Y) = ∑
e∈Y

score(e) = ∑
e∈Y

w⊺f(e)

• Inference: finding maximum spanning tree (MST) for
weighted, directed graph

Assign scores/weights
to all possible edges

Train a model to compute
these scores

37 SFU Nat LangLab CMPT 413/825: Natural Language Processing

Graph-based Dependency Parsing

53 SFU Nat LangLab CMPT 413/825: Natural Language Processing

MST Parsing Inference

(slide credit: Berkeley Info 159/259, David Bamman)38

MST Parsing Inference

54 SFU Nat LangLab CMPT 413/825: Natural Language Processing

MST Parsing Inference

(slide credit: Berkeley Info 159/259, David Bamman)39

MST Parsing Inference

55 SFU Nat LangLab CMPT 413/825: Natural Language Processing

Graph-based dependency parsing

• Training learn parameters so the score for the gold
tree is higher than for all other trees

40

Graph-based Dependency Parsing

56 SFU Nat LangLab CMPT 413/825: Natural Language Processing

Graph-based dependency parsing

• Training learn parameters so the score for the gold
tree is higher than for all other trees a single best tree

Train using structured
margin loss: structured
perceptron

41

Graph-based Dependency Parsing

57

Structured Perceptron

• Simple way to train (non-probabilistic) global models
• Find the one-best, and if it’s score is better than the correct

answer, adjust parameters to fix this

(slide credit: CMU CS 11-747, Graham Neubig)42
SFU Nat LangLab CMPT 413/825: Natural Language Processing

CMU CS 11-747, Graham Neubig

Structured Perceptron

58
SFU Nat LangLab CMPT 413/825: Natural Language Processing

CMU CS 11-747, Graham Neubig

Structured Perceptron and Hinge Loss

(slide credit: CMU CS 11-747, Graham Neubig)

• Penalize when incorrect answer is within margin m

• Loss functions for structured perceptron
Note: hinge loss can be used
instead of cross-entropy loss
in other places as well

43

Structured Perceptron and Hinge Loss

59 SFU Nat LangLab CMPT 413/825: Natural Language Processing

Graph-based dependency parsing

• Training learn parameters so the score for the gold
tree is higher than for all other trees a single best tree

(figure credit: Stanford CS224N, Chris Manning)

• Add edge from each word to its
highest-scoring candidate head

• Repeat process for each word

• To get a good tree
• Compute a score for every possible dependency for each word
• With neural networks, leverage good “contexual” representations of each word token

45

Graph-based Dependency Parsing

60 SFU Nat LangLab CMPT 413/825: Natural Language Processing

Neural Networks for
Graph-based Dependency Parsing

• Pre-neural networks
• MSTParser - use hard crafted features (McDonald et al, 2005)

• Neural networks - leverage better representation (“contextual” embeddings)
• Phrase Embeddings (Pei et al, 2015)
• BiLSTM feature extractors (Kipperwasser and Goldberg 2016)
• BiAffine Classifier (Dozat and Manning 2017)

Some of these

46

Neural Graph-based Dependency Parsing

61 SFU Nat LangLab CMPT 413/825: Natural Language Processing

Neural graph-based dependency parser
(Dozat and Manning 2017)

• Great result!
• But slower than simple neural transition-based parsers

• There are possible dependencies in a sentence of length n2 n

(slide credit: Stanford CS224N, Chris Manning)47

Graph-based Dependency Parsing

https://arxiv.org/pdf/1611.01734.pdf

https://arxiv.org/pdf/1611.01734.pdf

62

63

http://nlpprogress.com/english/dependency_parsing.html

64

Main idea

๏Attention mechanisms provide arguably explainable attention distributions that
can help to interpret predictions.

๏However, self-attention mechanisms have multiple heads, making the combined
outputs difficult to interpret.

๏Label Attention Layer: a modified version of self-attention, where each
classification label corresponds to one or more attention heads.

๏New state of the art for both constituency and dependency parsing, in both
English and Chinese.

https://www.aclweb.org/anthology/2020.findings-emnlp.65.pdf

Finding Syntax in
Word

Representations

66 Hewitt and Manning, A Structural Probe for Finding Syntax in Word Representations, ACL 2019

Do They Encode Syntax?

Q1: do pertained LMs encoded syntax through unlabeled corpus?
Q2: if yes, how to detect the syntax encoded?

67 Hewitt and Manning, A Structural Probe for Finding Syntax in Word Representations, ACL 2019

A Structural Probe for Finding Syntax
๏Propose a structural probe to test whether syntax trees are embedded in a

linear transformation of a neural network’s word representation space.
๏Tree structure is embedded if the transformed space has the property that

squared L2 distance between two words’ vectors corresponds to the number
of edges between the words in the parse tree.

๏To re-construct edge directions, we hypothesize a linear transformation under
which the squared L2 norm corresponds to the depth of the word in the parse
tree.

๏What to do? Uses supervision to find the transformations under which these
properties are best approximated for each model.

68 Hewitt and Manning, A Structural Probe for Finding Syntax in Word Representations, ACL 2019

The Structural Probe

๏Family of squared distance

๏Approximate through gradient descent

69 Hewitt and Manning, A Structural Probe for Finding Syntax in Word Representations, ACL 2019

The Structural Probe

Transformed
distance between word i, j

The linear
transformation to learn

(parameters of the probe)

context-sensitive
embedding of word j

tree distance
between word i, jlength of

sentence l

70 Hewitt and Manning, A Structural Probe for Finding Syntax in Word Representations, ACL 2019

The Tree Depth Structural Probe

๏ replace vector distance with squared norm

๏Approximate ||w_i||, i.e., the depth of word i, through gradient descent
Another linear transformation to learn (parameters of the probe)

71 Hewitt and Manning, A Structural Probe for Finding Syntax in Word Representations, ACL 2019

Experiments: Tree Distance

72 Hewitt and Manning, A Structural Probe for Finding Syntax in Word Representations, ACL 2019

Experiments: Tree Depth

73 Hewitt and Manning, A Structural Probe for Finding Syntax in Word Representations, ACL 2019

Experiments: Different Model Layers

UUAS: Undirected Unlabeled Attachment Score

DSpr: the average Spearman correlation of true to predicted distances

74 Hewitt and Manning, A Structural Probe for Finding Syntax in Word Representations, ACL 2019

Experiments: Rank of Matrix B

75 Hewitt and Manning, A Structural Probe for Finding Syntax in Word Representations, ACL 2019

Take aways

๏The structure of syntax trees emerges through properly defined distances and
norms on two deep models’ word representation spaces (ELMo and BERT).

๏Different layers have differences in terms of syntax information.
๏The transformation matrix B can be low-rank.
๏Future work: design probes for testing the existence of different types of graph

structures on any neural representation of language?

76

Todo
๏ Reading assignment 10:

• Rethinking Self-Attention: Towards Interpretability in Neural Parsing
https://aclanthology.org/2020.findings-emnlp.65.pdf

• Due date: April 15 23:59 pm, 2022 (EST timezone)
๏ Suggested Readings:

• Speech and Language Processing (3rd ed. draft). Dan Jurafsky and James
H. Martin, Chapter 14: Dependency Parsing

• The papers mentioned in our slides
• Globally Normalized Transition-Based Neural Networks: https://arxiv.org/pdf/

1603.06042.pdf
• Universal Dependencies: A cross-linguistic typology: https://

nlp.stanford.edu/~manning/papers/USD_LREC14_UD_revision.pdf
• Check NLP Progress website: http://nlpprogress.com

https://aclanthology.org/2020.findings-emnlp.65.pdf
https://arxiv.org/pdf/1603.06042.pdf
https://arxiv.org/pdf/1603.06042.pdf
https://nlp.stanford.edu/~manning/papers/USD_LREC14_UD_revision.pdf
https://nlp.stanford.edu/~manning/papers/USD_LREC14_UD_revision.pdf
http://nlpprogress.com

77

References

1. Stanford CS224N, Winter 2019: https://web.stanford.edu/class/archive/cs/
cs224n/cs224n.1194/slides/cs224n-2019-lecture05-dep-parsing.pdf

2. Emory University CS571: Natural Language Processing, Jinho D. Choi
3. SFU Nat LangLab CMPT 413/825: Natural Language Processing
4. Speech and Language Processing (3rd ed. draft), Dan Jurafsky and James H.

Martin, Chapter 14: Dependency Parsing
5. Hewitt and Manning, A Structural Probe for Finding Syntax in Word

Representations, ACL 2019
6. https://www.aclweb.org/anthology/2020.findings-emnlp.65.pdf

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/slides/cs224n-2019-lecture05-dep-parsing.pdf
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/slides/cs224n-2019-lecture05-dep-parsing.pdf
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/slides/cs224n-2019-lecture05-dep-parsing.pdf
https://web.stanford.edu/~jurafsky/slp3/14.pdf
https://www.aclweb.org/anthology/2020.findings-emnlp.65.pdf

Thanks! Q&A
Bang Liu 
Email: bang.liu@umontreal.ca
Homepage: http://www-labs.iro.umontreal.ca/~liubang/

mailto:bang.liu@umontreal.ca
http://www-labs.iro.umontreal.ca/~liubang/

